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B LU'MASH . LLHT NAFLD (non-alcoholic fatty liver
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2010 4F- PURE 1 & = A )L F — EEUCE, JRI= AL F— s,
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HTHDHI LN TH S (Fig. I-d)o ZDHEF. MetS
RBHDHZTBY (Fig.2)?. Wi B % My AU Bl
DGR SHIBIEEFENOBREFADEEZ TWEH O
TRV EHEIIL Tnd, SNOOFEY MR L CER
DERIEAE Z R T 5 2 &1k, AMERE % HI L TR
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HEALAPL R (GS) D3 5VIRRETH 50 REmL Tld, BE
WEBFE 2 TY. GSTHM (GST7) 4% &3 DI 4%
DRI EZIRE T 5o

AF Ry 7Yy —Ah (MetS) &
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MetS i3, WIEACH, Pe B SFE (8 IR E) . 7
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KT, EREEEZESTBY, 77— A HEIRELO
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7T WA v A) BT R R & T AE R
T, EREmIEE ERET 5. SURSIE, &k
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VTNV F e R (glyceraldehyde: GA) 7 & H3d 5%, HREH
RTIVTEeRIZiE~va » Y 7TV e R (malondialdehyde:
MDA). MGO. 77Ul 4 » i d b, & 528Kl
BRI HFTIET TV T RRyNafik 7V T e N
Wb b, MGOIZHEEBLOIREDOR T IZHR T 2 B
BTVTERTH b,
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Fig. 1. Nutritional and health trends in Japan.

a) Trends in energy intake and nutrient composition (ages =1 year). Since 2008, both total energy intake and the fat-derived
energy ratio have increased. b) Trends in average daily step counts (ages > 20 years). “Healthy Japan 21 (Second Edition)” sets
targets of 9,000 steps/day (men) and 8,500 steps/day (women) aged 20—64 years, and 7,000 steps/day (men) and 6,000 steps/
day (women) aged > 65 years. Current average step counts continue to decline and remain below targets. ¢) Trends in fat-derived
energy ratio and animal-fat ratio (ages =1 year). Both the fat energy ratio and the proportion of animal fat have steadily increased.
The recommended dietary fat energy ratio is 20-30 % according to the “Dietary Reference Intakes for Japanese (2020 Edition).”
Source: Ministry of Health, Labour and Welfare, “Changes in nutrition and health in Japan.” (Ref. 1)
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Fig. 2. Trends in the number of individuals with metabolic syndrome (including those at risk).

Source: Compiled based on the Ministry of Health, Labor and Welfare's "Status of Specific Health Checkups and Specific
Health Guidance," the Ministry of Internal Affairs and Communications' Statistics Bureau's "Population Estimates (as of

October 1,2024)," and the Dai-ichi Life Research Institute report (Reference 2). MetS, metabolic syndrome.
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TR S 52420, B EER CIER S D [HRIIFZ kb7
VR 7OV T = WVEFRESE | E T2 P TV T RS R
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1K) eEmaEE (HMW) (12 &4 DL _E [multimer]) O 4
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TELURRMEDD 5.

BAEAL OB IZ D W TIEARB 2 A% W AY, DNATRY
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FHW &R ARG ST,

MGOIZHEE 2 5N EOM FICHET AT VTR
THY., MPHEESE. EWIEIMGOIZK LTy ) 4+ %
7 — ¥ (glyoxalase: GLO) & (GLO1 BX U GLO2#
ER) &2 TB YS9, GSHEH N F& L TMGO % 3L
Fr~ AT 50 MGO D@17 5 & GSH AN E &S,
GSHANER &7 3, GSHIZFELIBILME Th 5720,
G VEEE ST (reactive oxygen species: ROS) X 71 —7 3
AIVEDIGIZ L > THHE S, £ OFEHR L L TF#lik
TIEGSHRZIRREHEL, BRILA ML AIZBE S LRI
MHEDOH#ERELZES %,

Lipid-derived
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FA 1

Carbohydrate-
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1 ik
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Total AA T
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Fig. 3. Formation of sugar-derived and lipid-derived aldehydes.
Postprandial hyperglycemia (“blood glucose spikes”) induces a chain reaction producing short-chain sugar-derived
aldehydes. These aldehydes further react with free fatty acids, generating lipid-derived aldehydes (“‘aldehyde sparks”).
Amino acids trap aldehydes and mitigate toxicity. HFD, high fat diet; TG, triglycerides; AGEs, advanced glycation

endproducts; AA, amino acids; FA, fatty acids
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glyceraldehyde glyceric acid i_> 1
P ~ |
NAD+ NADH + H+ Oxaloacetic acid Citric acid |
phosphorylation NADH + H' |
Ll NAD+ Isoc\itric acid 1
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ATP
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!
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Fig. 4. NAD+ consumption and its effects in glucose and lipid metabolism.
Excess carbohydrates activate the polyol pathway, while fatty acid P-oxidation and glycative stress overload metabolic enzymes
(ALDH, GAPDH), accelerating NAD+ consumption and decreasing the NAD+/NADH ratio. This disrupts the TCA cycle and
increases the NADH burden on the electron transport chain, enhancing ROS production. NAD, nicotinamide adenine dinucleotide;
NADH, reduced NAD+; FAD, flavin adenine dinucleotide; FADH2, reduced FAD; SDH, sorbitol dehydrogenase; TCA, tricarboxylic
acid; ALDH, aldehyde dehydrogenase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GLO, glyoxalase; GSH, glutathione;
ATP, adenosine triphosphate; ADP; adenosine diphosphate; GTP, guanosine triphosphate; GDP, guanosine diphosphate; acetyl CoA,

acetyl coenzyme A; ROS, reactive oxygen species.
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Fig. 5. TCA cycle dysfunction and fumarate accumulation.

Even-chain fatty acids produce acetyl-CoA, and odd-chain fatty acids produce propionyl-CoA and succinyl-CoA, which enter the TCA cycle
Succinate dehydrogenase (Complex II) in the inner mitochondrial membrane converts succinate to fumarate while producing FADH2, which
donates electrons to ubiquinone. Under NAD+ deficiency, succinate dehydrogenase remains active as long as FADH2 is available, leading to
fumarate accumulation. Abbreviations as in Fig. 4.
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Fig. 6. Fumarate-mediated modification of adiponectin and reduced HMW multimer secretion.

Adiponectin monomers fold in the ER to form trimers, which assemble into hexamers and high-molecular-weight (HMW) multimers for
secretion. Increased fumarate modifies cysteine residues to 2SC, preventing multimer formation and leading to impaired secretion of HMW
adiponectin. Modified from Nagai R et al., i

high-molecular-weight.

J Biol Chem 2007 (Ref. 47). ER, endoplasmic reticulum; 2SC, S-(2-succinyl)cysteine; HMW
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HIF-1a) ORFILRRIEVES A M A VB AEFES 25,
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INAFY =T = LTHHT LI EIINETH 5. BRI
ETNT v MTIEERHB L OTRIARIC2SC BHiEHE
AHEHLY, v b T8 M5 E RIE (chronic obstructive
pulmonary disease: COPD % K &)%) 128 v T $2SC 15
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fumarate X° succinate) B LN b3 ¥ K 7 ACHEE AT
HLTWAUEENH Y. 21T E2MARESEOG
B FRE L 72 55,

NAD+AE D B

KN TONAD+ O ERREIIR T (&, s HE D & HGR
% % (nicotinamide phosphoribosyltransferase: NAMPT,
nicotinamide mononucleotide adenylyltransferase: NMNAT
L) OWHMEMT & FBE T AARAR 2 H TH 555,
NAD+IZE S I VB3 (FA 7V V) R MAHIAENTE
BENLDT, MEAELNAD AN EDEKIZR L, Zh
I NAD+HAE =D FIZD %255, — )i TNAD+HHED
NS NAD+ A REDF K &7 %o NAD+HIZFLKFEREEIC
L7 NVTe N, IEIEED B ERIL. R+ — VRIS
BIFBH7Va—-2ANH THESNUNADHEZD . NAD+/
NADH 23 T4 245, Zhizx LTidGS 7 7 (L
ANV AREM) BEETH S,

Z M FTNMN (nicotinamide mononucleotide) % fi\>7=
B EER T, BRIDIIFSGE - 98/ JE ] - AE L) 2
ExIRIE L. HARYENR I 2> & BRI YRR 95 ~ o A J 7 Bl
B E DD Dt 0 d Ho NMNIIARIGITE 7 VBN I
BT, FENAD+ LN )V & ERH S, PRe R a#css -
I bR THEREE - SHENRZ 25T I ENEE
DOIFE TR EN TV 250, Shit L, i~ 7 A THF g
R 2SRk L BRI R AT 35 2 b 2 s L 72%9,
LibOW5ETHIF %% - JGIH1L (steatosis) 254 L. JFHE
e~ — 7 —ULENROSNZ, Hong bk ha v Ry
THEERTTEEZ L TRBRE oS FELZR L, RITFE
BIH 2L 729, Yoon 5 IENMN 2 A » 2 1) VK5
PRI R, ERER2SE T A2 2R LY, [k
I Longd SR EICE B A4 A0 HERPUE - IRIHIF 2 2
# L. FNAD+ R # oA EHE L7229 # LT, NMN
BRI 0 ZEHE - #ERICB ST AR E E . IE. A >~
A PR ZHEICYE L IR Ko R B O
TR RIS B,
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AR B BT S, 7L 70 YA ViE, TI K
Wil T FIVEAE S L NNAEANEANEIT, Y VE
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)Y OEIEEICAT R T Do 704 A Vid/Mafk
POTNIERANEAT L, BRI AT N D 7
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=X 2(PCQ)NREE . EHIIHINVAFIRTF ¥ —-FE
(carboxypeptidase E: CPE) 12X ->T. C X7 F A UJBx
EN AR IS D (Fig. 7))

FRPGWPERNT 7O A v 2) Y ESLELH, HWIOB
BTA YR Y OEG 28 2, BB CTIEIZEAL DA
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Fig. 7. Insulin biosynthesis in pancreatic f§ cells.
Under severe glycative stress, insulin undergoes aldehyde modification during biosynthesis. This modification
impairs the conversion of proinsulin to insulin within secretory granules, resulting in an increased proportion of
immature granules rich in proinsulin during glucose-stimulated secretion. ER, endoplasmic reticulum.
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Fig. 8. Estimated time course of glucose-stimulated insulin and proinsulin secretion.
Based on previous reports 9-67), this graph was estimated to predict what would happen if approximately 75g
of glucose was ingested. As insulin secretion approaches its peak, immature secretory granules increase, and
the proportion of proinsulin increases. Even after the peak, immature secretory granules are expected to remain
dominant, with proinsulin remaining at a high level in T2DM. Support was provided by ChatGPT and Gemini for
the creation of this graph. T2DM, type 2 diabetes mellitus.
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Fig. 9. Conceptual changes in glucose-stimulated insulin secretion.
Predictions at baseline and 60 minutes after glucose ingestion are shown. The proinsulin/IRI ratio was assumed to increase
from ~20% to ~40% in T2DM and from ~ 10 % to ~ 20 % in healthy individuals. The glycated-insulin/insulin ratio was
assumed to be 9% vs. <3 %, respectively. The 60-minute IRI was expressed as the same value for both T2DM and healthy
controls. In early T2DM, the glucose-stimulated response of [ cells is predicted to show excessive insulin secretion in
the early stages, but to show hypoinsulin secretion in the mid- to late stages. IRI, immunoreactive insulin, T2DM, type 2

diabetes mellitus.
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Table 1. GS care numerical goals.

GS Care Numerical Goals

[Body Type]

Waist circumference:

BMI 21-24

[Blood Tests]

Postprandial Hyperglycemia: Less than 140 mg/dL
ACmax Less than 40 mg/dL

Insulin Resistance:
Fasting insulin (IRI)
Proinsulin/IRI ratio

Less than 5 pU/mL
Less than 15 %

Adiponectin (HMW)

Dyslipidemia:

TG Less than 150 mg/dL
LDL-C Less than 140 mg/dL

Free fatty acids (NEFA) 0.2-0.5 mmol/L
Protein Intake Goal:

Plasma total amino acids 3.0-4.0 mmol/L

Men: Less than 85 cm; Women: Less than 90 cm

Men: 6 pg/mL or greater; Women: 9 pg/mL or greater

These values represent levels of free fatty acids (FFA or NEFA) transported bound to albumin in the blood. These fatty acids are released when triglyc-
erides are hydrolyzed by lipase in adipose tissue and are used as an energy source in the liver and muscles. The targets reflect the fact that MetS patients
exhibit chronically elevated NEFA concentrations (0.7—1.0 mmol/L or higher). While the general reference range for plasma total amino acids is 2.3-3.5
mmol/L, the table shows values based on the top quartile (estimated). GS, glycative stress; MetS, metabolic syndrome; BMI, body mass index; ACmax,
increment from the preprandial blood glucose level to maximum blood glucose concentration (Cmax) after starting a meal; IRI, immunoreactive
insulin; HMW, high-molecular-weight form; TG, triglycerides; LDL-C, low-density lipoprotein cholesterol; FFA, free fatty acids; NEFA,

non-esterified fatty acids.
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Table 2. Proportion of excess mortality related to diet: Results of the GBD epidemiological survey.

Risky Foods Recommended intake

Risks of inadequate intake

Fruits 200 ~ 200 g/day
Vegetables 280 ~ 320 g/day
Legumes 90 ~ 100 g/day

140 ~ 160 g/day

10 ~ 19 g/day

360 ~ 500 g/day

1.06 ~ 1.1 g/day

21 ~ 22 g/day

7 ~ 9 % of total energy intake
430 ~ 470 mg/day

Whole grains
Nuts & seeds
Milk

Calcium
Dietary fiber
PUFA

Q-3 Fatty acids

Risks of excessive intake

Sodium 1 ~ 6 g/day, 24 hour urine

Excess mortality rate (estimated %: Japan)

Cardiovascular Cancer T2DM Total
3.6 1.2 6.0 1.4
0.9 0.1 0.2
2.4 0.6
5.6 2.1 4.6 2.2
3.2 2.8 0.8

2.4 0.8
2.0 0.6
2.7 0.3 3.0 0.8
0.9 0.2
1.4 0.4
7.9 1.1 2.7

Both men and women, ages 25 and older, 2019 estimates. GBD, Global Burden of Disease. Source: Shoichiro Tsugane. What is a diet that contributes
to maintaining health? Current evidence. Food and Science 2022. Reference 89.
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Table 3. Development status of drugs for treating steatohepatitis (MASLD/MASH).

Main Effects and
Drug Class/Name Characteristics
Reduces liver fat and inflammation
through appetite suppression,
weight loss, and improved insulin
sensitivity.

GLP-1 receptor agonist
(semaglutide)

GIP/GLP-1 dual
receptor agonist
(tirzepatide)

The combined effects of GIP and
GLP-1 have been shown to
significantly improve weight loss
and metabolism.

(14)

Overseas Approval/ .
Clinical Trial Stage Key Literature

Improvement of MASH was Sanyal AJ, et al.

confirmed in a Phase 3 study N Engl J Med. 2025.
(ESSENCE trial). Applications

for MASH indication are

currently being submitted in the

US and Europe.

Loomba R, et al.
N Engl J Med. 2024.

Efficacy confirmed in the
SYNERGY-NASH trial (2024).
Phase 3 completed, currently
under review by the US FDA.



SGLT?2 inhibitors
(e.g., empagliflozin,
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Promotes urinary glucose
excretion, resulting in weight loss,

Numerous Phase 2 trials have
reported improvements in liver fat
and ALT. Global trials are
ongoing.

Multiple RCTs have reported

Cho KY, et al.
J Diabetes Investig.
2021.

Sumida Y, etal.J

dapagliflozin) liver fat reduction, and improved
insulin resistance.
Thiazolidinedione Improves insulin resistance and
(pioglitazone) has anti-inflammatory effects.
Vitamin E Reduces hepatocellular damage
(tocopherol) through antioxidant effects.

THR-f agonist
(resmetirom)

Promotes hepatic fatty acid
oxidation via thyroid hormone
receptor [3.

FXR agonist
(obeticholic acid/OCA)

Improves bile acid metabolism
and has anti-fibrotic effects.

improvement in NASH tissue Gastroenterol. 2018.
structure. Overseas, it is sometimes
recommended for patients with

metabolic disorders.

Effective for non-diabetic NASH
in the PIVENS trial.

Limited recommendation in
international guidelines.

Sanyal AJ, et al.
N Engl J Med. 2010.

Harrison SA, et al.
N Engl J Med. 2024.

Approved by the US FDA in 2024
as the world's first treatment for
MASH. Application preparations
are underway in Japan.

An international Phase 3 trial
(REGENERATE) reported a trend
toward improved fibrosis. Approval

Sanyal AJ, et al.
J Hepatol. 2023.

was postponed due to side effects
(pruritus, elevated LDL-C).

GLP-1, glucagon-like peptide-1; GIP, gastric inhibitory polypeptide ; MASLD, metabolic dysfunction-associated steatotic liver disease ; MASH,
metabolic dysfunction-associated steatohepatitis ; NASH, non-alcoholic steatohepatitis ; FXR, farnesoid X receptor; RCT, randomized controlled trial;
OCA, obeticholic acid, activating FXR ; SGLT, sodium-glucose co-transporter; ALT, alanine aminotransferase; LDL-C, low-density lipoprotein

cholesterol .
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